Alexander Graham Bell

6 Ağustos 2008 Çarşamba


3 Mart 1847 yılında İskoçya'da Edinburgh'da doğdu. Edinburgh'daki McLauren's Akademisinde öğrenim gördü. 1860 yılında Kraliyet Lisesi'nden mezun oldu. Graham Bell'in iki erkek kardeşi veremden öldü. Bu ölümler nedeni ile doktorlarının tavsiyesine uydular ve Kanada'ya göç ettiler. 2 sene gibi kısa bir süre burada yaşadıktan sonra Amerika'ya yerleştiler.1873 yılında Boston Üniversite'sinde ses fizyolojisi profesörü oldu. Kullanılabilir ilk telefonun icadını 1875 yılında yaptı ve patentini 1 yıl sonra aldı.1877 yılında Bell Telephone Company adlı şirketi kurdu. 1880 yılında şirketten ayrıldı ve işitme engelliler üzerinde çalışmak için Volta Laboratuvarı'nı kurdu. İşitm engelliler için konuşmaların ışınlar aracılığı ile iletilebilmesini sağlayan Photophone isimli icadını gerçekleştirdi.
1880 ve 81 yılları arasında Edison'un Fonograf'ını geliştirmeye çalıştı. Bu araştırma geliştirme sonucunda kayıt tutabilen Graphopone ortaya çıktı. Bu prototip ile yaptığı kayıtlar halen Amerika'daki Smithsonian Enstitüsü'nde saklanmaktadır. Aynı yılın sonlarına doğru ilkel bir metal dedektör icat etti. Bunu geliştirmek için herhangi bir çaba göstermedi ancak 1925 yılında aynı temellere dayanan daha gelişmiş bir modeli Gerhard Fisher icat edecekti.Yeni doğan bir bebeği solunum rahatsızlığı nedeniyle ölünce bunun üzerinde çalıştı. Yapay bir akciğer üretmeyi başardı ve adını Vacuum Jacket koydu. 10 Kasım 1882 yılında Amerikan vatandaşlığına geçti. Bir yıl sonra Dünyaca ünlü bilim dergisi Science'ın kurulmasında birçok katkısı oldu.1888 yılında ise National Geographic Society'nin kurulmasına yardımcı oldu. Sağır vatandaşlara konuşma öğretmek için bir dernek kurdu. 1904 yılında Bileşik Hücresel Hava Aracı isimli bir icat için patent aldı. 1907 yılında havacılık deneyleri birliğinin kurulmasına yardımcı oldu. Hayatı boyunca 30 patent aldı ve75 yaşına geldiğinde 1922 yılında hayata gözlerini kapadı.

Albert Einstein


- "Okula gitmem neden gerekiyor, babacığım?" Sert görünüşlü baba, sekiz yaşındaki oğlunu tepeden süzdü. - "Albert, kara cahil biri olarak mı büyümek istiyorsun, yoksa?" - "Kara cahil de ne demek?" İyi döşenmiş geniş salonun öbür ucundan bir kahkaha yükseldi. Baba ile oğul, birlikte, büyük piyano başındaki anneye döndüler. - "Ah Hermancığım, bilmiyor musun, o oyunda Albert'le başa çıkamayacağını?" "Doğrusunu istersen, ne demek istediğini anlayamıyorum." diye kekeledi kocası.Eski bir Macar halk şarkısını çalmayı sürdüren bayan Einstein, - "Haydi, haydi, bilmezlikten gelme. Bilmiyor muyum sanki, Albert'i soru sormaktan vazgeçirmek için sorusuna soruyla yanıt vermek taktiğini!" Ama görüyorsun ya, yürümüyor!" dedi.
Albert seğirterek annesinin yanına gitti; tuşlar üzerinde kayan usta parmaklar ona bir anda ne sorduğunu unutturmuştu. Piyano şarkı söylüyordu, adeta! İki tuşa sert bir vuruşla çalmasını noktalayan anne, taburesinde döndü, oğlunu kolları arasına aldı. Albert'in koyu gür, dalgalı saçlarının üstünden kocasına gülümsedi: - "Görüyorsun ya, Albert'i soru sormaktan alıkoymanın bir yolu vardır: benim müziğim!" Baba da gülümsedi; bir şey demeğe kalmadan, oğlan annesinin kucağında dönerek, - "Soru sormak kötü bir şey mi?" diye sordu. Bu kez gülme sırası babasındaydı: - "İşte sana! Boşuna övünme, senin müziğinin de onu durduracağı yok." Anne kocasını duymazlıktan gelerek, oğluna döndü: - "Soru sormanın hiçbir kötü yanı yok, tatlım. Yeter ki, soruların karşındakini küçük düşürmeye ya da kırmaya yönelik olmasın!" - "Ama ben öyle bir şey yapmıyorum, anneciğim. Bilmediğim o kadar çok şey var ki, sorarak öğrenmek istiyorum; her şeyi öğrenmek istiyorum." Anne gururla gülümsedi; baba ise biraz duraksamalı, - "Peki, dediğin gibi gerçekten her şeyi öğrenmek istiyorsan yavrum, okula neden gitmen gerektiğini nasıl sorabilirsin? Okul soruların yanıtlandığı yer değil midir?" diye araya girdi. - "Değildir, babacığım!" dedi çocuk. "Yanıtlamak şöyle dursun, soru bile sordurmuyorlar, insana. Okuldan hoşlanmıyorum. Hapishanedeymişim gibi sanki. Öğretmenler gardiyanlardan farksız; sıralar arasında gidip gelen gardiyanlar!" Karı koca birbirlerine tedirgin gözlerle bakıştılar. Albert'in bu suçlamalarına ne diyebilirlerdi ki... İşte her şeyi sorgulayan bu çocuk, ilerde büyük bilimsel atılımların yanı sıra özentisiz, erdemli bilge kişiliğiyle de tüm dünyanın ilgi odağı olacaktı. Albert Einstein, Güney Almanya'nın Ulm kentinde dünyaya geldi. Küçük bir elektrokimya fabrikasının sahibi olan babası başarılı bir iş adamı değildi. Annesinin dünyası müzikti; özellikle Beethoven'in piyano parçalarını çalmak en büyük tutkusuydu. Aile Musevî kökenliydi, ama dinsel bağnazlıktan uzak, açık görüşlü, kültürel etkinliklerle zengin bir yaşam içindeydi. Ne var ki, çocuğun ilk yıllardaki gelişmesi kaygı vericiydi. Özellikle konuşmadaki gecikmesi aileyi telaşa düşürmüştü.Albert, içine kapanıktı; çocukların arasına katılmaktan, oyun oynamaktan hoşlanmıyordu. Okulu sıkıcı buluyor, ezbere dayanan eğitim disiplinine katlanamıyordu. "Gimnazyum"da geçen orta öğrenimi mutsuz ve başarısızdı. Mühendis amcasının özel ilgisi olmasaydı, belki de öğrenimden tümüyle kopacaktı. Amca, yeğene cebir ve geometriyi sevdirdi. Geometri özellikle Albert'i bir tür büyülemişti.Einstein, yıllar sonra amcasına borcunu şöyle dile getirir: "Çocukluğumda yaşadığım iki önemli olayı unutamam. Biri, beş yaşımda iken amcamın armağanı pusulada bulduğum gizem; diğeri on iki yaşımda iken tanıştığım Öklit geometrisi. Gençliğinde bu geometrinin büyüsüne girmeyen bir kimsenin ilerdi kuramsal bilimde parlak bir atılım yapabileceği hiç beklenmemelidir!" Einstein, yüksek öğrenimini güç koşullara göğüs gererek Zürih Teknik Üniversitesi'nde yapar. Mezun olduğunda iş bulmak sorunuyla karşılaşır. Üniversitede asistanlık bir yana orta okul öğretmenliği bile bulamaz. Sonunda bir okul arkadaşının yardımıyla Bern Patent Ofisi'nde sıradan bir işe yerleşir; ama asıl dünyası olan bilimden kopmaz; çok geçmeden büyüsü bugün de süren devrimsel atılımlarıyla yaratıcı dehasını kanıtlar. 1905'te Annalen der Physik dergisinde yayımlanan üç çalışmasının her biri, fizik tarihinde bir dönüm noktası sayılabilecek nitelikteydi. Bunlardan biri, şimdi "fotoelektrik etki" dediğimiz bir olaya ilişkindi. Newton, ışığı tanecikler akımı, kimi bilim adamları ise dalga devinimi diye nitelemişti. Aslında ışığın davranışını açıklamada iki kuramın birbirine bir üstünlüğü yoktu; ancak, Newton'un adı parçacık kuramına bir tür ağırlık sağlamaktaydı.Ne var ki, 19. yüzyılın başlarında Young'la başlayan, Fresnel ve daha sonra Faraday ve Maxwell'in çalışmalarıyla pekişen deneyler dalga kuramına belirgin bir üstünlük sağlamıştı. Einstein'ın fotoelektrik çalışması bu gelişmeyi bir bakıma tersine çevirmekle kalmaz, Planck'ın 1900'de ortaya sürdüğü kuantum teorisini de çarpıcı bir biçimde doğrular. Daha az bilinen ikinci çalışma "Brown devinimi" denen bir olayı açıklıyordu. 1850'lerde İngiliz botanikçisi Robert Brown, mikroskopla polenleri incelerken, taneciklerin su içinde gelişigüzel sıçramalarla devinim içinde olduğunu gözlemlemişti. Ancak bu gözlem 1905'e dek açıklamasız kalır.Einstein'ın bugün de geçerliliğini koruyan açıklaması oldukça basittir: Son derece hafif olan polenlerin ani kımıltıları, su moleküllerinin çarpmalarıyla oluşuyordu. Gerçi molekül kavramı yeni değildi; ancak en güçlü mikroskop altında bile görülemeyecek kadar küçük olan moleküllerin varlığı ilk kez bu açıklamayla kanıtlanmış oluyordu.Yüzyılımızın başında Ernst Mach gibi kimi seçkin fizikçilerin bile gözlemsel kanıt yokluğu gerekçesiyle atom teorisine uzak durdukları bilinmektedir. Öyle ki, bu olumsuz tutum, gazların kinetik teorisinin kurucusu Boltzman'ı intihara sürükleyecek kadar ileri gitmişti. Einstein'ın açıklaması, bu tutuma son vermekle fiziğin içine düştüğü bir tıkanıklığı giderir. 1905'in bilim dünyasına yeni bir ufuk açan üçüncü ve en önemli çalışması, Özel Görecelik (Special Relativity) kuramıdır. Bu kuram, Einstein'ın genç yaşında kendini gösteren bir merakına dayanır. Daha on dört yaşında iken Einstein, "Bir ışık ışınına binmiş olsaydım, dünya bana nasıl görünürdü, acaba?" diye sormuştu.19. yüzyılın sonlarında ışığın hızına ilişkin Michelson-Morley deneyi, bu merakı derinleştiren bir sorun ortaya koymuştu: Ses ve başka dalga olaylarının, tersine ışık hızının referans sistemine görecel olmayışı! Saatte 100 km hızla ilerleyen bir lokomotifin, iki istasyon arasında düdük çaldığını düşünelim. Sesin ön ve arka istasyonlara değişik hızlarla ulaşacağını biliyoruz: Öndeki istasyona normal ses hızından saatte 100 km daha fazla, arkada kalan istasyona ise saatte 100 km daha yavaş bir hızla ulaşır. Oysa trendeki insanlar için sesin hızında bir değişiklik yoktur; ön ve arka uçlara normal hızıyla aynı anda ulaşır. Sesin hızı gözlemcinin hızına göreceldir.Işığa gelince Michelson Morley deneyleri, ışığın öyle davranmadığını göstermekteydi. Işık kaynağı ile gözlemcinin birbirine görecel hareketlerine ne olursa olsun ışık hızında bir değişiklik gözlemlenmemekteydi. Bu beklenmeyen bir sonuçtu; çünkü, sesin hava aracılığıyla yayıldığı gibi, ışığın da "esir" denen gizemli bir ortam aracılığıyla yayıldığı ve gözlemcinin hareketine bağlı olduğu sanılıyordu. Esir gözlemlenebilir bir nesne değildi; ama öyle bir kavram olmaksızın optik olgular nasıl açıklanabilirdi? Kaldı ki, Maxwell'in elektromanyetik teorisi de esir türünden bir ortam varsayımına dayanıyordu. Einstein'ın getirdiği çözüm, deney sonuçlarını yansıtan şu iki temel ilkeyi içermektedir. 1) Doğa yasaları ivmesiz hareket eden tüm sistemler için aynıdır; 2) Işığın hızı, kaynağına göre hareket halinde olsun veya olmasın, her gözlemci için aynıdır. Özel Görecelik Kuramı'nın öncüllerini oluşturan bu iki temel ilke, yeterince anlaşılmadıkça, Einstein devrimini kavramaya olanak yoktur. Kuramın içerdiği tüm önermeler, bu öncüllerin mantıksal sonuçlarıdır. Aslında deneysel nitelikte olan bu iki ilkenin yol açtığı kuramsal devrim, ilk bakışta şaşırtıcı görünebilir. Ama sonuçlarına bakıldığında şaşkınlık, yerini büyük bir hayranlığa bırakmaktadır. Sonuçlardan biri, bir gözlemciye bağıl olarak nesnelerin hareketleri yönünde uzunluklarının kısaldığı, kütlelerinin arttığı öndeyişidir. Örneğin, bir topu ışık hızına yakın (yakın, çünkü kurama göre ışık hızını yakalamaya ve aşmaya olanak yoktur) bir hızla uzaya fırlattığımızı varsayalım: Hareket dışındaki bir gözlemci için top bir tepsi gibi yassılaşırken, kütlesi büyük ölçüde artar. Hızı kesildiğinde top, önceki biçim ve kütlesine döner.Kurama göre hızı ışık hızına erişen bir nesnenin oylumu sıfır, kütlesi sonsuz olur. Ancak öyle birşey düşünülemeyeceğinden, hiçbir nesnenin ışık hızıyla hareketi beklenemez. Başka bir deyişle, kütle eyleme direnç demek olduğundan, kütlenin sonsuzlaşması hareketin yok olması demektir. Daha az şaşırtıcı olmayan bir sonuç da, zamanın görecelliği. Örneğin, birbirine tam ayarlı iki saatten birini çok hızlı bir roketle uzaya yolladığımızı düşünelim. Bu saatin yerdeki saate göre daha yavaş çalıştığı görülecektir. Roket saniyede yaklaşık 260,000 km hızla yol alıyorsa, yerdeki saatin yelkovanı iki tam dönüş yaptığında roketteki saatin yelkovanı ancak bir tam dönüş yapacaktır. Oysa rokette bulunan gözlemci için öyle bir yavaşlama söz konusu değildir; saat normal hızıyla çalışmaktadır. Ne var ki, bu kişi dünyaya döndüğünde kendisini karşılayan ikiz kardeşini daha yaşlanmış bulacaktır. Kuramdan matematiksel olarak çıkan bu sonuçlar daha sonra deneysel olarak doğrulanmıştır. Kuramın belki de en önemli (atom bombası nedeniyle en çok bilinen) bir sonucu da madde ve enerji eşdeğerliliğine ilişkin denklemdir:E=mc² (Denklemde E enerji, m kütle, c ışık hızı olarak kullanılmıştır).Başlangıçta bu ilişkinin önemi yeterince kavranmamıştı. Einstein'ın denklemi içeren yazısını yayımlamakta güçlükle karşılaştığını biliyoruz. Oysa küçük bir kütlenin büyük bir enerji demek olduğunu ortaya koyan bu denklem yıldızların (bu arada Güneş'in) ışığı nasıl ürettiğini de açıklamaktaydı. Kuramın evren anlayışımız yönünden de kimi sonuçları olmuştur. Bunlar arasında en önemlisi, hiç kuşkusuz uzay ve zaman kavramlarını birleştiren dört boyutlu uzay zaman kavramıdır. Özel Görecelik kuramı düzgün doğrusal (ivmesiz) hareket eden sistemlerle sınırlıydı. Einstein'ın 1915'te ortaya koyduğu Genel Görecelik kuramı ise birbirine göre hızlanan veya yavaşlayan (yani ivmeli hareket eden) sistemleri de kapsıyordu. Öyle ki, birinci kuramı, kapsamı daha geniş ikinci kuramın özel bir hali sayabiliriz.Özel Görecelik, Newton'un mekanik yasalarını değiştirmişti. Genel Görecelik daha ileri giderek "gravitasyon" kavramına yeni ve değişik bir içerik getirmekteydi. Klasik mekanikte gravitasyon, kütlesel nesneler arasında çekim gücü olarak algılanmıştı. Buna göre, örneğin bir gezegeni yörüngesinde tutan şey, kütlesi daha büyük Güneş'in çekim gücüydü.Oysa, Genel Görecelik kuramına göre, gezegenleri yörüngelerinde tutan şey Güneş'in çekim gücü değil, yörüngelerin yer aldığı uzay kesiminin Güneş'in kütlesel etkisinde oluşan kavisli yapısıdır. Öyle bir uzay yapısında, nesnelerin başka türlü hareketine fiziksel olanak yoktur. Genel kuram, ayrıca gravitasyon ile eylemsizlik ilkesini "gravitasyon alanı" adı altında tek kavramda birleştiriyordu.Bu noktada Einstein'ın, Maxwell'in "elektromanyetik alan" kavramından esinlendiği söylenebilir. Nitekim tanınmış bilim tarihçisi I.B. Cohen'in bir anısı bunu doğrulamaktadır: "Ölümünden iki hafta önce Einstein'ı ziyarete gitmiştim. Sekreter beni çalışma odasına aldı. İki duvar döşemeden tavana kitaplıktı. Bir duvar geniş penceresiyle bahçeye bakıyordu; diğerinde iki tablo asılıydı: Elektromanyetik teorinin kurucuları Faraday ile Maxwell'in portreleri!Genel Görecelik kuramının tüm mantıksal yetkinliğine karşın, hemen benimsenmesi bir yana anlaşılması bile kolay olmamıştır. Eddington'a, "kuramı yalnızca üç kişinin anlayabildiği söyleniyor, doğru mu?" diye sorulduğunda, ünlü astrofizikçi bir an duraklar, sonra "üçüncü kişinin kim olduğunu düşünüyordum." der. Bir kez, Özel kuramın tersine Genel kuram, fizikte çözümü istenen herhangi bir soruna yönelik bir arayışın ürünü değildi. Sonra, kuramı doğrulayan gözlemsel bir kanıt henüz ortada yoktu; üstelik, 1915'in teknolojik olanakları kuramın deneysel yoklanması için yeterli değildi. Kuramın öndeyilerinden yalnızca biri yoklanmaya elveriyordu; ancak içinde bulunulan savaş koşulları bunu da güçleştirmekteydi.Einstein, kuramından öylesine emindi ki, deneysel yoklamada ortaya çıkacak olumsuz herhangi bir sonucu kuramın yanlışlığı için yeterli sayacağını bildirmekten kaçınmıyordu. Olgusal yoklanmaya elveren öndeyi şuydu: kuram doğruysa, Güneş'in gravitasyon alanından geçen bir ışık ışınının, eğrilmesi gerekirdi. Bu etkiyi gündüz aydınlığında belirlemeğe olanak olmadığı için, Güneş'in tutulmasını beklemekten başka çare yoktu.Astronomlar Güneş'in 1919 Mayıs'ında tutulacağını, gözlem bakımından en uygun yerin Afrika'nın batısında Prens Adası olabileceğini bildirmişlerdi. Eddington'un önderliğinde bir grup bilim adamının gerçekleştirdiği gözlem ve ölçmeler öndeyiyi doğrulamaktaydı. Sonuç İngiliz Kraliyet Bilim Akademisi tarafından açıklanır açıklanmaz bilim dünyası bir tür büyülenir; Einstein, Newton düzeyinde bir yücelik simgesine dönüşür. Kuram daha sonra başka gözlemlerle de doğrulanmıştır. Bunlardan biri açıklanmasında klasik mekaniğin yetersiz kaldığı bir olaya (Merkür gezegeninin perihelisinin kaymasına), bir diğeri, Güneş (ve diğer yıldız) atomlarının saçtığı ışığın frekans düşüklüğü nedeniyle spektral çizgilerin spektrumun kırmızı ucuna doğru kayması olayına ilişkindir. Özel Görecelik kuramı gibi Genel Görecelik kuramının da ilk bakışta çelişik görünen ilginç sonuçları vardır. Örneğin, kurama göre, evren büyüklük bakımından sonlu ama sınırsızdır. Gene kuram evrenin giderek ya büyümekte ya da küçülmekte olduğunu içermektedir (Nitekim yıldız kümeleri üzerindeki gözlemler evrenin büyümekte olduğunu göstermiştir). Einstein, bu kuramıyla da yetinmez; yaşamının son otuz yılını daha da kapsamlı bir kuram oluşturma çabasıyla geçirdi. Evrende olup bitenleri bir tek ilke altında açıklamak, insanoğlunun, kökü klasik çağa inen değişmez bir arayışıdır. Thales tüm varlığı suya, Pythogoras sayıya indirgeyerek açıklamaya çalışmıştı.Modern çağda Oersted, Faraday ve Maxwell'in elektrik ve manyetik güçleri özdeşleştirme yoluna gittiklerini görüyoruz. Einstein'ın da ömür boyu süren düşü buna yönelikti: Doğanın tüm güçlerini (gravitasyon, elektrik, manyetizma, vb.) "birleşik alanlar" dediği temel bir ilkeye bağlamak. Bu düşün gerçekleştiği söylenemez belki; ama Einstein, çağdaş fiziğin egemen akımı dışında kalma pahasına, umudundan hiçbir zaman vazgeçmez. Evrenin nedensel düzenliliği onda bir tür dinsel inançtı. "Seçeneğim kalmasa, doğa yasalarına bağlı olmayan bir evren düşünebilirim belki; ama doğa yasalarının istatistiksel olduğu görüşüne asla katılamam. Tanrı, zar atarak iş görmez!" diyordu. Kuantum mekaniğini yetersiz ve geçici sayan çağımızın (belki de tüm çağların) en büyük bilim dehası, kendi yolunda "yalnız" bir yolcuydu; çocukluğa özgü saf ve yalın merakı, evren karşısında derin hayret ve tükenmez coşkusuyla ilerleyen bir yolcu!

Charles Darwin







Düşünce tarihinde pek az bilim adamı Darwin ölçüsünde tepki çekmiştir. Evrim kuramını içine sindiremeyenler onu hiç bir zaman bağışlamamışlardır. Yaşadığı dönemde, "Maymunla akrabalık bağın annen tarafından mı, baban tarafından mı?" diye alaya alınmıştı. Günümüzde ise daha ileri giden, onu bir "şarlatan", dahası bir "şeytan" diye karalamak isteyen çevreler vardır. Bir bilim adamına gösterilen bu tepkinin nedeni neydi? Darwin kimdir, ne yapmıştı? Darwin küçük yaşında iken de horlanmıştı, hem de babası tarafından: "Seni, anlaşılan, ava çıkma, köpeklerle eğlenme ve fare yakalama dışında hiç bir şey ilgilendirmiyor. Geleceğin, kendin ve ailen için yüz karası olacaktır!" Geleceğinin yüz karası olacağı söylenen çocuk, biyolojinin anıt yapıtı Türlerin Kökeni'nin yazarı, tüm çağların sayılı bilim adamlarından biri olur.
Varlıklı bir ailenin çocuğu olarak dünyaya gelen Charles Darwin, sekiz yaşına geldiğinde annesini yitirir. Çocuğunun iyi yetişmesi yolunda hiç bir şey esirgemeyen babası başarılı ve saygın bir hekimdi. Dedesi Erasmus Darwin, evrim konusuyla ilgilenen tanınmış bir doğa bilginiydi. Entellektüel bir çevrede büyüyen Charles okulda parlak bir öğrenci değildi. Öğretmenleri arasında ona "aptal" gözüyle bakanlar bile vardı. Oysa bu bakış, yüzeysel bir izlenimi yansıtmaktaydı; sıkıntı Charles'ın okul programıyla bağdaşmayan kendine özgü ilgilerinden kaynaklanıyordu. Hayvanlara, özellikle böceklere derin bir ilgisi vardı. Daha küçük yaşında onu saran bu ilgi, ilerde belirginlik kazanan üstün gözlemleme yeteneğinin itici gücüydü. Üniversitede, ilk iki yılını alan tıp öğrenimi başarısız geçer. Dönemin tartışma konuları arasında onu yalnızca canlıların kökeni sorunu ilgilendirmekteydi. Ama babası umudunu tümüyle yitirmek istemiyordu; hekim olmak istemeyen oğlunu hiç değilse din adamı olmaya ikna eder. Edinburg'dan Cambridge Üniversitesine geçen delikanlı burada da, teoloji öğreniminin yanı sıra böcek toplama etkinliğini sürdürür; oluşturduğu zengin koleksiyonla bilim çevrelerinin beğenisini kazanır. Bu arada botanik ve jeoloji derslerini de izlemekten geri kalmaz. Yirmi iki yaşında üniversiteyi bitirir, ama kilisede görev almaya yönelik değildir. Bir rastlantı, aradığı olanak kapısını ona açar. Güney Amerika kıyılarından başlayarak uzun süreli bir araştırma gezisine çıkmaya hazırlanan kraliyet gemisi Beagle'e doğa araştırmacısı aranmaktaydı. Botanik profesörünün tavsiyesi üzerine Darwin'e, masraflarını kendisinin karşılaması koşuluyla, bu görev verilir. Ancak genç bilim adamının babasının desteğini sağlaması kolay olmaz. 1831'de başlayan geziye Darwin beş yıl süren yoğun ve çetin bir uğraşla, dünyanın henüz bilinmeyen pek çok kıyı ve adalarında türlere ilişkin fosil ve örnekler toplar; gözlemsel bilgiler edinir, notlar alır. Doğa onun için tükenmez bir laboratuvardı. Özellikle Gallapagus adalarındaki dev kaplumbağalar ile kuşlar üzerindeki gözlemleri, değişik çevre koşullarında türlerin nasıl oluştuğu konusunda ona önemli ipuçları sağlamıştı. Kimi türlerin çevreyle uyum kurarak sürdürdüğü, kimi türlerin ise değişen koşullarda uyumsuzluğa düşerek yok olduğu izlenimi kaçınılmazdı. Ülkesine döndüğünde Darwin'in yapması gereken şey, topladığı bilgileri işlemek, evrim olgusuna kanıtlara dayalı açıklık getirmekti. Ne var ki, bu kolay olmayacaktı. Bir kez toplanan gözlem verilerinin düzenlenmesi bile yıllar alacak bir işti. Sonra, evrim konusu dikenli bir sorundu; yerleşik önyargılara ters düşmek kolayca göze alınamazdı. Darwin incelemelerinden türlerin sabit olmadığını, uzun süreli de olsa, çevre koşullarına göre değiştiğini öğrenmişti. Ama "evrim" denen bu değişimin düzeneği neydi? Bu soruya yanıt arayışı içinde olan Darwin'e 1838'de okuduğu bir kitap ışık tutar. Thomas Malthus'un yazdığı Nüfus Üzerine Deneme adlı bu kitap ilginç bir tez ortaya koyuyordu: canlılar için yaşam bir var olma ya da yok olma savaşımıdır; çünkü, hemen her çevrede, nüfus artışı beslenme olanaklarını kat kat aşmaktadır. Bu savaşımda güçlüler karşısında zayıf kalanlar yok olup gider; çevresiyle uyumsuzluğa düşenler elenirken, uyum kuranlar çoğalır. 19. yüzyılın acımasız kapitalizminin "laissez faire et laissez passer" (bırakınız yapsınlar, bırakınız geçsinler) sloganında da yansıyan bu düşünce, Darwin'in yirmi yıl sonra açıkladığı evrim kuramının özünü oluşturur: doğal seleksiyon evrimin itici gücü, ilerlemenin dayandığı düzenekti. Evrim düşüncesi, insanın kendi varlık kökenini bilme merakım da içermektedir. İlkel topluluklarda bile kendini açığa vuran bu merakın özellikle mitoloji ve dinlerin oluşumundaki rolü yadsınamaz. Ancak bilim öncesi açıklamalar masalımsı birer öğreti niteliğindedir. Her şey gibi insan da Tanrısal gücün ürünüdür. Gelişmiş dinlerde bile evrim düşüncesi yer almamıştır. Evrimden ilk söz edenler, M.Ö. 6. yüzyılda yaşayan İyonya'lı filozoflar olmuştur. Thales tüm nesneler gibi canlıların da sudan oluştuğu savındaydı. Daha çarpıcı görüşü onu izleyen Anaximander'de bulmaktayız: "Canlıların kaynağı denizdir. Başlangıçta balık olan atalarımızdan bugünkü formumuza evrimleşerek ulaştık." Gene o dönemin bir başka filozofu, Herakleitus, canlıların gelişmesinde aralarındaki çatışmanın rolüne değinir. Bunlardan ikiyüz yıl sonra gelen antik çağın ünlü filozofu Aristoteles'te evrim düşüncesi daha belirgindir. Onun görüşünde aşağıdaki ilginç noktaları bulmaktayız: (1) Canlıların en ilkel düzeyde kendiliğinden oluştuğu, (2) Organizmaların basitten daha karmaşık formlara doğru geliştiği, (3) Canlıda organların ihtiyaca göre oluştuğu. Ancak ortaçağ teolojisinde bu tür düşüncelere yer yoktu. Gerçek kutsal kitaplarda açıklanmıştı. Evrim düşüncesi bir sapıklıktı. Evrime bilimsel yaklaşım, Aydınlık Çağı'nın sağladığı göreceli özgür düşünme ortamını bekler. Bu alanda ilk adımı Fransız doğa bilimcisi Buffon'un attığı söylenebilir. Buffon, canlıların sınıflanmasına ilişkin Aristoteles sistemini düzeltme ve geliştirme amacıyla çalışmaya koyulur. İlgilendiği konuların başında evrim geliyordu. Fosil ve diğer kanıtlara dayanarak canlı türlerin evrimle oluştuğu görüşüne ulaşmıştı. Ama kilisenin sert tepkisiyle karşılaşınca, Buffon, "Kutsal kitapta bildirilenlere ters düşen sözlerimi geri alıyorum" diyerek sessizliğe gömülür. Ünlü isveç botanikçisi Linnaeus'un modern sınıflama yöntemine ilişkin çalışması evrim düşüncesine destek sağlayan başka bir girişimdir. Darwin'in dedesi Erasmus Darwin de, Buffon gibi, canlıların yaşam dönemlerinde edindikleri beceri veya özelliklerin yeni kuşaklara geçmesiyle evrimleştiği görüşündeydi. Bu görüşü geliştiren Fransız doğa bilgini Lamarck ise evrim konusunda oldukça tutarlı ilk kuramı oluşturur. Kısaca, "canlıların yaşam dönemlerinde kazandıkları özelliklerin ya da uğradıkları değişikliklerin (bunlar çevre koşullarının etkisinde ortaya çıkabileceği gibi, organların kullanış veya kullanışsızlık nedeniylede olabilir) kalıtsal yoldan yeni kuşaklara geçtiği" diye özetleyebileceğimiz bu kuram, sağduyuya yatkın görünmesine karşın, bilim dünyasında beklenen ilgiyi bulmaz. Kuramın olgusal içerik yönünden yetersizliği bir yana, bilinen kimi gözlemsel verilere ters düşmesi benimsenmesine olanak vermiyordu. Açıklama gücünü bugün de koruyan, daha kapsamlı ve tutarlı evrim kuramını Darwin'e borçluyuz. 1859'da yayımlanan Türlerin Kökeni adlı yapıtta ortaya konan bu kuramın benimsenmesine ortam hazırdı. Kısa sürede bir kaç yeni basım yapan kitap, insanlığın dünya anlayışında eşine pek rastlanmayan köklü bir devrime kapı açmaktaydı. Dönemin seçkin bilginlerinden T. H. Huxley'in şu sözlerinin çağdaşı pek çok bilim adamının duygularını dile getirdiği söylenebilir: Biz türlerin oluşumuna ilişkin, doğruluğu olgusal olarak yoklanabilir bir açıklama arayışı içindeydik. Aradığımızı Türlerin Kökeni'nde bulduk. Kutsal kitabın masalımsı açıklaması geçerli olamazdı. Bilimsel görünen diğer açıklamaları da yeterli bulamıyorduk. Darwin kuramı her yönüyle bilimsel yeterlikte idi. Kuramın dayandığı iki temel nokta vardır: (1) Canlı dünyada, yeni türlerin oluşumuna yol açan sürekli ama yavaş giden değişim; (2) "Doğal seleksiyon" dediğimiz evrim sürecini işler kılan düzenek. Birinci nokta, türlerin sabitliği varsayımını içeren yerleşik öğretiye ters düşmekteydi. İkinci nokta, evrimin tüm ereksel görünümüne karşın salt mekanik terimlerle açıklanabileceğini göstermekteydi. Darwin kuramının özünü oluşturan doğal seleksiyon, başlangıçtan günümüze değin, değişik eleştirilere uğramıştır. Bu nedenle, ilkenin öncelikle açıklığa kavuşturulması gerekir. Darwin'in evrim kuramı, gözlenebilir üç olgu ve iki ilke içerir. İlk olgu, üreme biçimleri ne olursa olsun, canlıların geometrik diziyle çoğalma eğilimidir. İkinci olgu, bu eğilime karşın türlerde nüfusun aşağı yukarı sabit kaldığıdır. Bu iki olgudan, Darwin 'yaşam savaşımı' ilkesine ulaşır. Üçüncü olgu, canlıların (bir türü hatta bir aileyi oluşturan bireylerin bile) az ya da çok belirgin farklılıklar sergilemesidir. Yaşam savaşımı ilkesiyle birleşen bu olgu Darwin'i temel ilkesi olan doğal seleksiyon düşüncesine götürür. Belli bir çevrede farklı özellikler taşıyan bireyler arasında yaşam savaşımı varsa, doğal koşullara uyum bakımından, özellikleri üstünlük sağlayan bireylerin (veya türlerin) egemenlik kurması, diğerlerinin elenmesi kaçınılmazdır. Evrim sürecinin dayandığı bu düzeneğe, tüm eleştiri ve uğraşlara karşın, daha geçerli diyebileceğimiz bir alternatif bulunamamıştır. Ayrıntılarında kimi değişikliklere uğramakla birlikte, kuramın sürgit Darwinci kalmayacağını gösteren herhangi bir belirti yoktur ortada! Newton, yerçekimi ilkesiyle devinim yasalarının, yersel ya da göksel, tüm nesneler için geçerli genellemeler olduğunu göstermişti. Darwin de yaşam savaşımı, doğal seleksiyon, çevreye uyum gibi bir kaç ilke içeren kuramıyla evrim olgusuna bilimsel açıklama getirdi; insanın ottan çiçeğe, amipten maymuna uzanan canlı dünyanın bir parçası olduğunu gösterdi.

klima

Yapay havalandırma ve yapay soğutma sistemleri artık çağlardan beri kullanılıyor:Eskiden insanlar kapı girişlerine ıslak hasırlar asarak ya da konutlarını(hava akımlarını, evin içine girmeden önce avludaki fıskiyelerin arasından geçirmek yoluyla) serinlik sağlayacak şekilde tasarlayarak çözüm arıyorlardı. 19. yüzyıla gelindiğinde, havayı serinletmek için buzun önüne vantilatörler yerleştirilmeye başlanmıştı; ama Willis H. Carrier'in icadı olan bilimsel olarak tasarlanmış ilk klima için 1902'yi beklemek gerekti. Carrier, 1901'de Cornell Üniversitesi elektrik mühendisliği bölümünden mezun oldu; aynı yıl Temmuz ayında Buffalo'daki Buffalo Forge Company'de çalışmaya başladı. Altı ay içinde şirketin araştırma geliştirme laboratuvarının başına getirildi. Buradaki ilk projelerinden biri, ısıtma bobinlerinden oluşan bir sistemden geçirildiğinde havanın ne kadar ısı soğurabileceğini belirlemekti; bulguları şirketin ısınma giderlerinde binlerce dolar tasarruf sağladı. İlk projelerinden bir başkası da soğutmaya yönelikti.; Brooklyn'de Sackett-Wilhelms Lithographing and Publishing adlı matbaa şirketi, ısı ve nem değişimleri yüzünden kağıdın genleşmesi ve büzüşmesi sonucu baskı sürecinde renklerin donuklaşması gib bir sorun yaşıyordu. Willis H. Carrier; 17 Temmuz 1902'de bu şirket için dünyanın ilk klimasının tasarımlarını tamamladı: Klima, matbaanın ısı ve nem oranını hassasiyetle denetleyen 30 tonluk bir makinaydı.
Carrier, icadını geliştirmeyi sürdürdü ve iki yıl sonra 16 Eylül 1904'te püskürtmeli ilk klima sistemi olan "havayı işlemden geçiren aygıt" için patent başvurusu yaptı. (patent 1906 yılında verildi): Bu sistemde hava, bir fan aracılığıyla aygıtın içine çekiliyor, püskürtülerek soğutuluyor (ya da ısıtılıyor) ve saflığını bozan her türlü yabancı maddeden arıtılması için su bir dizi bölmeden geçiyordu; ardından su yeniden dolaşıma girerken, işlenmiş hava fabrikanın havasını düzenlemek üzere klimadan dışarı veriliyordu. Carrier Engineering ve başka firmaların konut klimaları üretimine geçmesi içinse, 1920'lerin sonunu beklemek gerekecekti.

İbn-i Sina

Felsefe, matematik, astronomi, fizik, kimya, tıp ve müzik gibi bilgi ve becerinin çeşitli alanlarında seçkinleşmiş olan, İbn-i Sinâ (980-1037), matematik alanında matematiksel terimlerin tanımları; astronomi alanında ise duyarlı gözlemlerin yapılması konularıyla ilgilenmiştir. Astroloji ve simyaya itibar etmemiş, Dönüşüm Kuramı'nın doğru olup olmadığını yapmış olduğu deneylerle araştırmış ve doğru olmadığı sonucuna ulaşmıştır. İbn-i Sinâ'ya göre, her element sadece kendisine özgü niteliklere sahiptir ve dolayısıyla daha değersiz metallerden altın ve gümüş gibi daha değerli metallerin elde edilmesi mümkün değildir.
İbn-i Sinâ, mekanikle de ilgilenmiş ve bazı yönlerden Aristoteles'in hareket anlayışını eleştirmiştir. Aristoteles, cismi hareket ettiren kuvvet ile cisim arasındaki temas ortadan kalktığında, cismin hareketini sürdürmesini sağlayan etmenin ortam, yani hava olduğunu söylüyor ve havaya, biri cisme direnme ve diğeri cismi taşıma olmak üzere birbiriyle bağdaşmayacak iki görev yüklüyordu. İbn-i Sinâ, bu çelişik durumu görmüş, yapmış olduğu gözlemler sırasında hava ile rüzgârın güçlerini karşılaştırmış ve Aristoteles'in haklı olabilmesi için havanın şiddetinin rüzgârın şiddetinden daha fazla olması gerektiği sonucuna varmıştır. Oysa bir ağacın yakınından geçen bir ok, ağaca değmediği sürece, ağaçta ve yapraklarında en ufak bir kıpırdanma yaratmazken, rüzgâr, ağaçları sallamakta ve hatta kökünden kopartabilmektedir; öyleyse havanın şiddeti, cisimleri taşımaya yeterli değildir. İbn-i Sinâ, her şeyden önce bir hekimdir ve bu alandaki çalışmalarıyla tanınmıştır. Tıpla ilgili birçok eser kaleme almıştır; bunlar arasında özellikle kalp-damar sistemi ile ilgili olanlar dikkat çekmektedir. Ancak, İbn-i Sinâ dendiğinde, onun adıyla özdeşleşmiş ve Batı ülkelerinde 16. yüzyılın ve Doğu ülkelerinde ise 19. yüzyılın başlarına kadar okunmuş ve kullanılmış olan "el-Kânûn fî't-Tıb" (Tıp Kanunu) adlı eseri akla gelir. Beş kitaptan oluşan bu ansiklopedik eserin birinci kitabı, anatomi ve koruyucu hekimlik, ikinci kitabı basit ilaçlar, üçüncü kitabı patoloji, dördüncü kitabı ilaçlarla ve cerrahi yöntemlerle tedavi ve beşinci kitabı ise çeşitli ilaç terkipleriyle ilgili ayrıntılı bilgiler vermektedir. İbn-i Sinâ'nın söz konusu eseri incelendiğinde, konuları sistematik bir biçimde incelediği görülür. Tarihte ilk defa, tıp ve cerrahiyi iki ayrı disiplin olarak değerlendiren İbn-i Sinâ, cerrahi tedavinin sağlıklı olarak yürütülebilmesi için anatominin önemini özellikle vurgulamıştır. Hayati tehlikenin çok yüksek olmasından ötürü pek gözde olmayan cerrahi tedavi ile ilgili örnekler vermiş ve ameliyatlarda kullanılmak üzere bazı aletler önermiştir. Gözle de ilgilenmiş olan İbn-i Sinâ, döneminin seçkin fizikçilerinden İbn-i Heysem gibi, Göz-Işın Kuramı'nı savunmuş ve üst göz kapağının dışa dönmesi, sürekli beyaz renge veya kara bakmaktan meydana gelen kar körlüğü gibi daha önce söz konusu edilmemiş hastalıklar hakkında da ayrıntılı açıklamalarda bulunmuştur.

Johann Gregor Mendel

"Bilim adamı" deyince çoğumuzun gözünde laboratuvarda deneylerine gömülmüş, ak önlüklü, gözlüklü biri canlanır. Oysa bilimin öncüleri arasında çalışmasını kum üzerinde (Arşimet), eğik kulede (Galileo), çiftlikte (Newton), doğa araştırma gemisinde (Darwin), patent bürosunda (Einstein) yapanları biliyoruz. Bilim düşünsel bir etkinliktir; yeri laboratuvarla değil, zekâ, imgelem ve istenç gücüyle sınırlıdır. Bunun çarpıcı bir örneğini çalışmalarını aralıksız yirmi yıl manastır bahçesinde sürdüren keşiş Mendel vermiştir. Genetik biliminin kurucusu Gregor Mendel, Avusturya imparatorluğuna dahil Çekoslavakya'da yoksul bir köylü çocuğu olarak dünyaya gelir. O zaman kırsal kesimde hâlâ bir tür derebeylik düzeni egemendi. Topraksız köylüler için boğaz tokluğuna ırgatlık dışında fazla bir seçenek yoktu; tek kurtuluş yolu belki de eğitimdi.
Ne var ki, eğitim de çoğunluk ilkokulla sınırlı kalmaktaydı; daha ilerisi için halkın parasal gücü yoktu. Herkes gibi Gregor'un da doğuştan alın yazısı babası gibi rençber olmaktı. Ama hayır, bu çocuk düzenin koyduğu engeli aşacak, kendine özgü kararlılık içinde yeteneğini ortaya koyacaktı. İlkokuldaki başarısı göz kamaştırıcıydı. Öğretmenlerinin ısrarı üzerine aile, sonunda çocuğun orta öğrenimi için izin verir. Gregor, evinden uzakta altı yıl bir yurtta yetersiz bakım ve beslenme koşullarına göğüs gererek okur; ama, acısını uzun yıllar çekeceği yorgun, cılız ve sağlıksız bir bedenle mezun olur. Mendel daha öğrencilik yıllarında bilimin büyüsüne kendini kaptırmış; özellikle botanik yoğun ilgi alam olmuştu. Fakat yüksek öğrenim onun için ulaşılması güç bir hayâldi. Burs olanağı yoktu; kız kardeşinin bağışladığı çeyizi de yeterli olmaktan uzaktı. Mendel için bir tek yol vardı: Bir katolik manastırına girmek. Avusturya'da botanik müzesi, bahçe bitkileri ve zengin kitaplığıyla ünlü Brünn Manastırı Mendel için "ideal" bir öğrenim merkeziydi. Yirmibeş yaşında "papaz" unvanını alan Mendel'in asıl özlemi hiç değilse bir ortaokulda öğretmen olmak, araştırmaları için daha elverişli bir ortam bulmaktı. Bu amaçla girdiği sınavda yeterli görülmez. Üniversite öğreniminden yoksun kalmış olması önemli bir handikaptı. Genç papaz umudunu yitirmemiştir. Viyana Üniversitesi'nde dört sömestr fizik ve doğal tarih öğrenimi gördükten sonra şansını yeniden dener. Ama yine başarılı görülmez. Sınav kurulu önyargılıdır; kendine özgü değişik bir tutum sergileyen genci anlamaktan uzak kalır. Adayın özellikle evrim ve kalıtıma ilişkin görüşleri bağışlanır gibi değildi. Mendel için artık manastıra çekilip araştırmalarını bahçe bitkileri üzerinde sürdürmekten başka çare kalmamıştı. Canlılarda özelliklerin kuşaktan kuşağa geçişi, Mendel'in sürgit ilgi odağını oluşturan konuydu. Herkes yeni doğan bir yavrunun atalarının özelliklerini taşıdığını biliyordu. Dahası, kimi yavrunun daha çok anaya, kimi yavrunun da daha çok babaya çektiği gözden kaçmıyordu. Ancak bilinen bu olayların "bilimsel" diyebileceğimiz bir açıklaması yoktu ortada. Mendel bezelyeler üzerindeki deneylerine öyle bir açıklama bulmak için koyulmuştu. Çalışmasını, bu amaçla seçtiği 22 çeşit bezelyenin boylu-bodur, sarı-yeşil, yuvarlak-buruşuk,... gibi 7 çift karşıt özellikleri üzerinde yoğunlaştırır. Örneğin, boylu ve bodur çeşitlerim çapraz döllediğinde ilk kuşak melez ürünün tümüyle boylu olduğunu saptar. Melez ürünü kendi içinde dölleyerek elde ettiği ikinci kuşak ürünün büyük bir bölümünün boylu, küçük bir bölümünün ise bodur olduğu görülür (aşağıdaki şekile bakınız!). Mendel iki çeşit arasındaki oranı hesaplar: 1064 bitkinin yaklaşık 3/4'ü boylu, 1/4'ü bodurdur. Örneklem büyüklüğünden kaynaklanan olası hatayı göz önüne alan Mendel, oranı 3:1 olarak belirler (Boylu faktörü B, Bodur faktörü b ile gösterilmiştir).
Şekilde belirlenen durumun iyi anlaşılması için birkaç noktanın açıklık kazanması gerekir: (1) Döllenmede boylu ve bodur bezelyelerin hangisinin dişi, hangisinin erkek olduğu, sonucu etkilememektedir. Başka bir deyişle özelliğin belirlenmesinde boylu erkek, bodur dişi çift ile bodur erkek, boylu dişi çifti eşdeğerdir. (2) Dişi ya da erkek her canlı her özellik için biri başat, diğeri çekinik iki faktör taşır. Bezelye örneğinde, ilk kuşaktaki Bb melezinde ortaya çıkan B başattır, gizli kalan b çekiniktir. (3) Dişi ve erkekte her üreme hücresi faktörlerden yalnızca birini taşır; öyle ki, her yavru iki faktörle dünyaya gelir. Kuramın bu temel ilkesine "Mendel'in ayırım yasası" denmiştir. (4) İlk kuşaktaki melez (Bb) yavruların tümüyle boylu olması, faktörlerin döllenmede kaynaşmadığı, başat ya da çekinik her faktörün bireysel kimliğini koruduğunu gösterir. Nitekim ikinci kuşakta faktörlerin BB, Bb, bB ve bb olarak çıktığını görüyoruz. "Mendel'in bağımsız çeşitler" diye bilinen bu yasası yavruların kimi kez ana ve babaya değil, geçmişteki atalarına benzeme olayım da açıklamaktadır. Şöyle ki, kuşaktan kuşağa gizil kalan çekinik faktörlerin birbiriyle birleşip ortaya çıkma olanağı vardır. Aynı şekilde yavrunun ana babadan birine daha çok benzemesi de başat ve çekinik faktörlerle açıklanan bir olaydır (Bağımsız çeşitler yasasını kısaca şöyle dile getirebiliriz: Döllenmede iki cinsiyetin her birinden gelen tek faktörler birbiriyle bağımsız ve rastgele birleşirler). Mendel başka bitkiler üzerinde yaptığı deneylerden de aynı sonucu almıştır. Daha sonra, biyologların böcek, balık, kuş ve memeliler üzerinde yürüttükleri deneyler de onun genetik teorisini doğrulamıştır. Mendel teorisi, evrim kuramının başlangıçta açıklamasız bıraktığı kimi önemli noktalara da ışık tutmuştur. Evrimi doğal seleksiyonla açıklayan Darwin de herkes gibi ana-baba özelliklerinin yavruda bir tür kaynaştığını varsayıyordu. Oysa bu doğru olsaydı, doğal seleksiyonla üstünlük kazanan özelliklerin kuşaklar boyu zayıflama sürecine girmesi gerekirdi. Örneğin, çok hızlı koşan bireyle koşma hızı normal bireyin çiftleşmesinden doğan bireyin (yavru) koşma hızı ikisi arasında olacak, sonraki kuşaklarda fark daha da azalarak kaybolmaya yüz tutacaktır. Darwin de bunun böyle olmadığının farkındaydı. Kaynaşma varsayımı ne kimi yavruların ana babadan yalnızca birine benzemesi olayıyla, ne de ara sıra görüldüğü gibi, beklenmedik bir özellikle dünyaya gelme olayıyla bağdaşmaktaydı. Özelliklerin önceki kuşak veya kuşaklardan olduğu gibi ve ayrı birimler olarak yavruya geçtiği düşüncesi, Mendel kuramının getirdiği bir açıklamadır. Mendel, kuramını 1865'te bilim çevrelerine sunmuştu. Ancak Mendel hayatta iken ilgi çekmeyen kuramın önemi, otuz beş yıl sonra kavranır. Hugo de Vries ve Weismann gibi bilim adamlarının çalışmaları olmasaydı Mendel'in devrimsel atılımı belki de daha uzun süre gün ışığına çıkmayacaktı. Genetik teorisi, evrim kuramına yeni bir boyut kazandırmakla kalmamış, günümüzde olumlu olumsuz çokça sözü edilen "genetik mühendisliği" denen bir çalışmaya da yol açmıştır.

termostat

Termostat 1830 yılı için yeni bir sözcük ve yeni bir kavram olabilir, ama sıcaklık ayarlama aygıtı için kullanılan teknoloji yeni değildi. Termostatın mucidi Andrew Ure (İskoçya), patentinde çeşitli tipte aygıtları tanımlamıştır. İçlerinde en karmaşık olanın içerdiği bimetalik şerit (genellikle bimetalik bir disk biçiminde), bugün bile termostatların çoğunun temelini oluşturur. Bimetalik şeridin işleyişi şöyledir: Sıcaklık değiştikçe temas halindeki iki metal farklı derecelerde genleşir ya da büzülür; bunun sonucunda eğilen şerit, ayar düğmesini ya etkin ya da etkisiz hale getirir. Ure bu ilkeyi ısı denetimine uygulayan ilk kişi olabilir; ancak, bu tür aygıtların öncüsü John Harrison idi. Harrison, 1726'da ünlü kronometresinde, sıcaklıktaki değişimlerin yol açtığı hataları telafi etmek için bimetalik sarkaç kullanmıştı.
Ure'ün patentindeki fikirleri yaygınlık kazanamadı ve yaygın olarak kullanılan ilk termostat, Charles Edward Hearson'ın 1881'de patentini aldığı sıvı termostat oldu. Hearson'ın termostatı, kümes hayvanlarının kuluçka makinesinde kullanılmak için tasarlanmıştı ve gereken sıcaklıkta kaynatılmış bir sıvıyla dolu kapalı bir kaptan ibaretti;kaynar sıvı, kabı genleştirip bir kumanda kolunu harekete geçiriyordu. Aynı ilke bugün de geçerliliğini korumakla birlikte, Hearson'ın tasavvur ettiği üzere, belli bir sıcaklıkta kaynayan sıvılar yerine, artık daha kullanışlı ve çok işlevli bir yöntem olarak, kılcal bir tüp içinde sıvının genleşmesi ya da büzülmesi yeterli oluyor. Termostatın üçüncü bir tipinde de gaz ya da sıvı dolu bir körük kullanılır; bu buluşun patentini, W.M. Fulton 1903 yılında almıştır. Körük, içini dolduran sıvı ya da gazın sıcaklığı artıp azaldıkça genleşir ya da büzülür; kademeli bir sıcaklık değişimi (örneğin, bir fırına gazın akışını denetlemek yoluyla) elde etmekte kullanılabilmesi gibi bir avantajı vardır. Termostatın kullanım alanları arasında, merkezi ısıtma sistemleri, elektrikli ütüler, bulaşık makineleri, çamaşır makineleri, su ısıtıcıları, buzdolapları, dondurucular ve fırınlar sayılabilir.